organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-[(E)-(3-formyl-4-hydroxyphenyl)diazenyl]benzoate

Tushar S. Basu Baul,^a⁺ Smita Basu^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, and ^bDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA Correspondence e-mail: edward.tiekink@utsa.edu

Received 26 June 2007; accepted 27 June 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.129; data-to-parameter ratio = 13.6.

The title compound, C₁₅H₁₂N₂O₄, displays a twisted conformation as reflected in the dihedral angle between the aromatic rings of 59.77 (7)°. Intra- and intermolecular $O-H \cdots O$ interactions are found, with the latter leading to a double chain arranged about a zigzag chain of $\{O - H \cdot \cdot \cdot O\}_n$ interactions.

Related literature

For related literature, see: Basu Baul et al. (1996, 2006, 2004).

Experimental

Crystal data

$C_{15}H_{12}N_2O_4$	b = 4.6113 (8) Å
$M_r = 284.27$	c = 21.067 (3) Å
Monoclinic, $P2_1/c$	$\beta = 108.140 \ (4)^{\circ}$
a = 14.164 (2) Å	V = 1307.6 (4) Å ³

‡ Additional correspondence author; e-mail: basubaul@nehu.ac.in.

Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.129$ S = 1.082638 reflections 194 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3O···O4	0.84	1.94	2.6876 (16)	147
O3−H3O···O3 ⁱ	0.84	2.48	2.9810 (15)	119
C13−H13···O1 ⁱⁱ	0.95	2.36	3.268 (2)	160
C9−H9···N2 ⁱⁱⁱ	0.95	2.66	3.596 (2)	167
$C4-H4\cdots O2^{iv}$	0.95	2.84	3.677 (2)	147

T = 153 (2) K

 $R_{\rm int}=0.021$

1 restraint

 $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

 $0.30 \times 0.15 \times 0.12 \text{ mm}$

11141 measured reflections 2638 independent reflections

2510 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, y - 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

The financial support of the Department of Science and Technology, New Delhi, India (grant No. SR/S1/IC-03/2005 to TSBB), is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2251).

References

- Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Basu Baul, T. S., Pyke, S. M., Sarma, K. K. & Tiekink, E. R. T. (1996). Main Group Met. Chem. 19, 807-814.
- Basu Baul, T. S., Singh, K. S., Linden, A., Song, X. & Eng, G. (2006). Polyhedron, 25, 3441-3448.
- Basu Baul, T. S., Singh, K. S., Song, X., Zapata, A., Eng, G., Lycka, A. & Linden, A. (2004). J. Organomet. Chem. 689, 4702-4711.
- Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3358 [doi:10.1107/S1600536807031327]

Methyl 2-[(E)-(3-formyl-4-hydroxyphenyl)diazenyl]benzoate

T. S. Basu Baul, S. Basu and E. R. T. Tiekink

Comment

The synthesis of the title compound (I) and their interactions with triorganotin(IV) moieties, have attracted much interest owing to their novel structural possibilities (Basu Baul *et al.*, 1996, 2006), and their significant biological activity towards mosquito larvae (Basu Baul *et al.*, 2004) and sea urchin early development stages (Basu Baul *et al.*, 2006).

Compound (I), Fig. 1, assumes an E-conformation. There is a twist in the molecule as seen in the N1—N2—C8—C9 and, in particular, the N2—N1—C7—C2 torsion angles of -163.77 (13) and -141.01 (14)°, respectively. This is also reflected in the dihedral angle of 59.77 (7)° formed between the C2—C7 and C8—C13 aromatic rings.

The hydroxyl group participates in an intramolecular O3—H···O4 hydrogen-bond and at the same time forms an intermolecular O3—H···O3 interaction with a centrosymmetric mate, Table 1, to form a double chain, Fig. 2. Additional stabilization to the chain are afforded by C—H···O1 contacts. Further, this arrangement allows for the close approach of the C=O4 carbonyl to the π -system of a translationally related C8—C13 ring; C12'=O4···*Cg*(C18—C13) = 3.2061 (13)ⁱⁱ Å for ii: *x*, -1 + y, *z*. The double-chains stack in columns parallel to the *b* axis. Connections between columns are afforded by weak C—H···O contacts, involving an aromatic C4—H and O2 atoms, and weak C—H···N contacts involving aromatic C9—H and azo-N2 atoms, the latter leading to a eight-membered [···HCCN]₂ synthon.

Experimental

2-[(*E*)-2-(3-Formyl-4-hydroxyphenyl)-1-diazenyl]benzoic acid (2.0 g, 7.40 mmol), prepared as in the literature (Basu Baul *et al.*, 1996), was dissolved in anhydrous methanol (150 ml) and transferred to a three-necked round bottom flask equipped with a dropping funnel, water-cooled condenser and a guard tube, all placed in an ice/salt bath. The clear solution was allowed to cool as the stirring was continued. After sufficient cooling, SOCl₂ (1.62 ml, 22.19 mmol) was added drop-wise over 30 min. The whole reaction mixture was allowed to warm to room temperature, stirred for 20 h, and then the volatiles were removed using a rotary evaporator. Water was added to the residue and neutralized with aqueous NaHCO₃ solution. The product was extracted in ethyl acetate and the resulting two-phase system was mixed well and filtered, and the layers were separated. The ethyl acetate portion was washed with water, dried over Na₂SO₄, and the solvent was evaporated to one-fourth of its initial solvent volume and kept at room temperature to yield (I). The solid was washed with hexane, dried *in vacuo* and recrystallized from an ethyl acetate-methanol mixture (v/v, 1:1) which afforded the orange crystals (m.p. 333–335 K) in 85% (1.78 g) yield. Elemental analysis, found: C 63.41, H 4.27, N 9.87%; C₁₅H₁₂N₂O₄ requires C 63.37, H 4.25, N 9.85%. IR (KBr, cm⁻¹): 1725 v(OCO)_{*asym*}. ¹H NMR (CDCl₃, 400.13 MHz): δ H: 11.37 [s, 1H, H4], 10.02 [s, 1H, H7], 8.41 [d, 2.6 Hz, 1H, H2], 8.19 [dd, 2.6, 8.8 Hz, 1H, H6], 7.83 [dd, 1.5, 7.7 Hz, 1H, H3'], 7.60 [dt, 1.5, 7.7 Hz, 2H, H4' & H6'], 7.51 [dt, 1.5, 7.7 Hz, 1H, H5'], 7.11 [d, 8.8 Hz, 1H, H5], 4.00 [s, 3H, H8'] p.p.m. ¹³C NMR (CDCl₃, 100.62 MHz): δ C: 196.9, 168.2, 164.6, 152.1, 146.4, 132.5, 131.1, 130.4, 130.3, 130.2, 129.0, 120.7, 119.2, 119.0, 52.8 p.p.m.

Refinement

All C-bound H atoms were included in the riding-model approximation, with C—H = 0.95 to 0.98 Å, and with $U_{iso}(H)$ = $1.2U_{eq}(C)$. The hydroxyl-H atom was located from a difference map and included so that O—H = 0.84 Å and $U_{iso}(H)$ = $1.5U_{eq}(O)$.

Figures

Figure 1 Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2 View of the supramolecular chain in (I) mediated by hydrogen bonds, shown as orange-dashed lines. Colour code: red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).

Methyl 2-[(E)-(3-formyl-4-hydroxyphenyl)diazenyl]benzoate

Crystal data	
$C_{15}H_{12}N_2O_4$	$F_{000} = 592$
$M_r = 284.27$	$D_{\rm x} = 1.444 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
Hall symbol: -P 2ybc	Cell parameters from 2012 reflections

a = 14.164 (2) Å	$\theta = 2.9 - 30.2^{\circ}$
<i>b</i> = 4.6113 (8) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 21.067 (3) Å	T = 153 (2) K
$\beta = 108.140 \ (4)^{\circ}$	Block, orange
$V = 1307.6 (4) \text{ Å}^3$	$0.30\times0.15\times0.12~mm$
Z = 4	

Data collection

Rigaku AFC12K/SATURN724 diffractometer	2638 independent reflections
Radiation source: fine-focus sealed tube	2510 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 153(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ω scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -17 \rightarrow 14$
$T_{\min} = 0.878, T_{\max} = 1$	$k = -5 \rightarrow 4$
11141 measured reflections	$l = -21 \rightarrow 26$

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_0^2) + (0.0717P)^2 + 0.3817P]$ where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\text{max}} = 0.001$
$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.60419 (8)	0.6564 (3)	0.46402 (5)	0.0425 (3)
O2	0.48259 (8)	0.7820 (3)	0.37164 (5)	0.0439 (3)
03	0.99285 (8)	-0.2764 (2)	0.70389 (5)	0.0360 (3)
H3O	0.9518	-0.4018	0.7075	0.054*
O4	0.82006 (8)	-0.5682 (2)	0.67043 (5)	0.0387 (3)
N1	0.74996 (9)	0.3207 (3)	0.43726 (6)	0.0328 (3)
N2	0.84243 (9)	0.3272 (3)	0.46527 (6)	0.0304 (3)
C1	0.57480 (10)	0.6905 (3)	0.40427 (7)	0.0331 (3)
C2	0.63371 (10)	0.6449 (3)	0.35758 (7)	0.0313 (3)
C3	0.60542 (11)	0.7840 (3)	0.29581 (8)	0.0365 (4)
Н3	0.5472	0.9006	0.2834	0.044*
C4	0.66068 (12)	0.7554 (4)	0.25217 (8)	0.0397 (4)
H4	0.6408	0.8533	0.2104	0.048*
C5	0.74493 (12)	0.5833 (4)	0.26977 (8)	0.0389 (4)
Н5	0.7823	0.5599	0.2397	0.047*
C6	0.77477 (11)	0.4460 (3)	0.33085 (7)	0.0348 (3)
Н6	0.8328	0.3286	0.3426	0.042*
C7	0.72068 (10)	0.4773 (3)	0.37562 (7)	0.0309 (3)
C8	0.87549 (10)	0.1598 (3)	0.52484 (7)	0.0286 (3)
C9	0.97161 (10)	0.2172 (3)	0.56704 (7)	0.0312 (3)
Н9	1.0116	0.3564	0.5541	0.037*
C10	1.00897 (10)	0.0743 (3)	0.62710 (7)	0.0322 (3)
H10	1.0734	0.1202	0.6560	0.039*
C11	0.95250 (10)	-0.1370 (3)	0.64554 (7)	0.0295 (3)
C12	0.85650 (10)	-0.2015 (3)	0.60252 (7)	0.0286 (3)
C12'	0.79609 (11)	-0.4270 (3)	0.61856 (7)	0.0333 (3)
H12'	0.7336	-0.4681	0.5866	0.040*
C13	0.81883 (10)	-0.0505 (3)	0.54276 (7)	0.0291 (3)
H13	0.7538	-0.0919	0.5141	0.035*
C14	0.42299 (11)	0.8673 (5)	0.41328 (9)	0.0473 (4)
H14A	0.4272	0.7175	0.4470	0.071*
H14B	0.3537	0.8907	0.3855	0.071*
H14C	0.4478	1.0514	0.4354	0.071*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0320 (5)	0.0608 (8)	0.0328 (6)	0.0020 (5)	0.0070 (4)	0.0048 (5)
O2	0.0301 (5)	0.0631 (8)	0.0353 (6)	0.0097 (5)	0.0054 (5)	0.0033 (5)
O3	0.0390 (6)	0.0332 (6)	0.0303 (6)	-0.0002 (4)	0.0027 (5)	0.0029 (4)
O4	0.0432 (6)	0.0379 (6)	0.0359 (6)	-0.0005 (5)	0.0135 (5)	0.0037 (5)
N1	0.0312 (6)	0.0318 (7)	0.0333 (7)	0.0014 (5)	0.0068 (5)	0.0025 (5)
N2	0.0303 (6)	0.0298 (6)	0.0293 (6)	0.0018 (5)	0.0067 (5)	-0.0002 (5)
C1	0.0272 (7)	0.0355 (8)	0.0318 (8)	-0.0023 (6)	0.0021 (6)	0.0010 (6)

supplementary materials

C2	0.0284 (7)	0.0314 (7)	0.0304 (8)	-0.0028 (5)	0.0038 (6)	-0.0005 (6)
C3	0.0334 (7)	0.0377 (8)	0.0327 (8)	0.0015 (6)	0.0022 (6)	0.0010 (6)
C4	0.0430 (8)	0.0440 (9)	0.0281 (8)	-0.0021 (7)	0.0053 (6)	0.0038 (6)
C5	0.0410 (8)	0.0434 (9)	0.0328 (8)	-0.0030 (7)	0.0120 (6)	-0.0028 (7)
C6	0.0323 (7)	0.0360 (8)	0.0342 (8)	0.0009 (6)	0.0076 (6)	-0.0016 (6)
C7	0.0301 (7)	0.0295 (7)	0.0300 (7)	-0.0032 (5)	0.0051 (5)	0.0002 (5)
C8	0.0301 (7)	0.0271 (7)	0.0279 (7)	0.0036 (5)	0.0081 (5)	-0.0009 (5)
C9	0.0303 (7)	0.0285 (7)	0.0348 (8)	0.0002 (5)	0.0099 (6)	-0.0008 (6)
C10	0.0281 (7)	0.0306 (7)	0.0336 (8)	0.0009 (6)	0.0035 (6)	-0.0025 (6)
C11	0.0322 (7)	0.0266 (7)	0.0274 (7)	0.0047 (5)	0.0062 (5)	-0.0026 (5)
C12	0.0299 (7)	0.0263 (7)	0.0294 (7)	0.0010 (5)	0.0088 (5)	-0.0034 (5)
C12'	0.0333 (7)	0.0331 (8)	0.0331 (8)	0.0007 (6)	0.0096 (6)	-0.0001 (6)
C13	0.0277 (6)	0.0289 (7)	0.0289 (7)	0.0025 (5)	0.0063 (5)	-0.0032 (5)
C14	0.0317 (8)	0.0643 (11)	0.0468 (10)	0.0069 (8)	0.0136 (7)	0.0050 (8)

Geometric parameters (Å, °)

C1—O1	1.2066 (19)	С5—Н5	0.9500
C1—O2	1.3407 (17)	C6—C7	1.396 (2)
C14—O2	1.448 (2)	С6—Н6	0.9500
O3—C11	1.3467 (17)	C8—C13	1.384 (2)
О3—НЗО	0.8401	C8—C9	1.400 (2)
O4—C12'	1.2257 (18)	C9—C10	1.378 (2)
N1—N2	1.2582 (17)	С9—Н9	0.9500
N1—C7	1.4298 (18)	C10—C11	1.390 (2)
N2—C8	1.4230 (18)	C10—H10	0.9500
C1—C2	1.490 (2)	C11—C12	1.4112 (19)
C2—C3	1.393 (2)	C12—C13	1.392 (2)
C2—C7	1.402 (2)	C12—C12'	1.452 (2)
C3—C4	1.387 (2)	C12'—H12'	0.9500
С3—Н3	0.9500	С13—Н13	0.9500
C4—C5	1.384 (2)	C14—H14A	0.9800
C4—H4	0.9500	C14—H14B	0.9800
C5—C6	1.377 (2)	C14—H14C	0.9800
C1—O2—C14	115.68 (12)	C13—C8—N2	124.14 (12)
С11—О3—НЗО	107.5	C9—C8—N2	116.44 (12)
N2—N1—C7	112.28 (12)	С10—С9—С8	120.81 (13)
N1—N2—C8	114.16 (12)	С10—С9—Н9	119.6
O1—C1—O2	122.71 (14)	С8—С9—Н9	119.6
O1—C1—C2	126.03 (13)	C9—C10—C11	120.12 (13)
O2—C1—C2	111.25 (12)	С9—С10—Н10	119.9
C3—C2—C7	118.68 (14)	C11-C10-H10	119.9
C3—C2—C1	119.63 (13)	O3—C11—C10	118.16 (12)
C7—C2—C1	121.60 (13)	O3—C11—C12	122.41 (13)
C2—C3—C4	121.18 (14)	C10-C11-C12	119.43 (13)
С2—С3—Н3	119.4	C13—C12—C11	119.79 (13)
С4—С3—Н3	119.4	C13—C12—C12'	118.77 (13)
C5—C4—C3	119.64 (14)	C11—C12—C12'	121.42 (13)
C5—C4—H4	120.2	O4—C12'—C12	124.63 (13)

supplementary materials

С3—С4—Н4	120.2	O4—C12'—H12'	117.7
C4—C5—C6	120.14 (15)	C12—C12'—H12'	117.7
С4—С5—Н5	119.9	C8—C13—C12	120.39 (12)
С6—С5—Н5	119.9	С8—С13—Н13	119.8
C7—C6—C5	120.69 (14)	C12—C13—H13	119.8
С7—С6—Н6	119.7	O2-C14-H14A	109.5
С5—С6—Н6	119.7	O2-C14-H14B	109.5
C6—C7—C2	119.64 (13)	H14A—C14—H14B	109.5
C6—C7—N1	119.76 (13)	O2-C14-H14C	109.5
C2—C7—N1	120.42 (13)	H14A—C14—H14C	109.5
C13—C8—C9	119.41 (13)	H14B—C14—H14C	109.5
C7—N1—N2—C8	-176.49 (11)	N2—N1—C7—C2	-141.01 (14)
C14—O2—C1—O1	6.2 (2)	N1—N2—C8—C13	16.02 (19)
C14—O2—C1—C2	-172.67 (14)	N1—N2—C8—C9	-163.77 (13)
O1—C1—C2—C3	-157.39 (16)	C13—C8—C9—C10	-2.3 (2)
O2—C1—C2—C3	21.44 (19)	N2-C8-C9-C10	177.52 (12)
O1—C1—C2—C7	19.0 (2)	C8—C9—C10—C11	2.2 (2)
O2—C1—C2—C7	-162.17 (13)	C9—C10—C11—O3	178.37 (12)
C7—C2—C3—C4	1.0 (2)	C9—C10—C11—C12	-0.6 (2)
C1—C2—C3—C4	177.50 (14)	O3-C11-C12-C13	-179.87 (12)
C2—C3—C4—C5	0.7 (2)	C10-C11-C12-C13	-1.0 (2)
C3—C4—C5—C6	-1.3 (2)	O3-C11-C12-C12'	-1.0 (2)
C4—C5—C6—C7	0.2 (2)	C10-C11-C12-C12'	177.91 (13)
C5—C6—C7—C2	1.5 (2)	C13—C12—C12'—O4	-177.73 (13)
C5—C6—C7—N1	176.71 (13)	C11—C12—C12'—O4	3.4 (2)
C3—C2—C7—C6	-2.1 (2)	C9—C8—C13—C12	0.7 (2)
C1—C2—C7—C6	-178.52 (13)	N2-C8-C13-C12	-179.08 (12)
C3—C2—C7—N1	-177.23 (13)	C11—C12—C13—C8	0.9 (2)
C1—C2—C7—N1	6.3 (2)	C12'—C12—C13—C8	-178.02 (13)
N2—N1—C7—C6	43.86 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O3—H3O…O4	0.84	1.94	2.6876 (16)	147
O3—H3O···O3 ⁱ	0.84	2.48	2.9810 (15)	119
C13—H13···O1 ⁱⁱ	0.95	2.36	3.268 (2)	160
C9—H9····N2 ⁱⁱⁱ	0.95	2.66	3.596 (2)	167
C4—H4···O2 ^{iv}	0.95	2.84	3.677 (2)	147

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, y+1/2, -z+1/2.

